Resting Membrane Potential
The resting membrane potential is caused by the difference in ionic concentrations and conductances across the membrane of the cell during phase 4 of the action potential. The normal resting membrane potential in the ventricular myocardium is about -85 to -95 mV. This potential is determined by the selective permeability of the cell membrane to various ions. The membrane is most permeable to K+ and relatively impermeable to other ions. The resting membrane potential is therefore dominated by the K+ equilibrium potential according to the K+ gradient across the cell membrane. The membrane potential can be calculated using the Goldman-Hodgkin-Katz voltage equation. The maintenance of this electrical gradient is due to various ion pumps and exchange mechanisms, including the Na+-K+ ion exchange pump, the Na+-Ca2+ exchanger current and the IK1 inwardly rectifying K+ current. I is the symbol for an electric current.
Intracellularly (within the cell), K+ is the principal cation, and phosphate and the conjugate bases of organic acids are the dominant anions. Extracellularly (outside the cell), Na+ and Cl- predominate
Read more about this topic: Cardiac Action Potential
Famous quotes containing the words resting and/or potential:
“I saw God! Do you doubt it?
Do you dare to doubt it?
I saw the Almighty Man! His hand
Was resting on a mountain!”
—James Kenneth Stephens (18821950)
“Views of women, on one side, as inwardly directed toward home and family and notions of men, on the other, as outwardly striving toward fame and fortune have resounded throughout literature and in the texts of history, biology, and psychology until they seem uncontestable. Such dichotomous views defy the complexities of individuals and stifle the potential for people to reveal different dimensions of themselves in various settings.”
—Sara Lawrence Lightfoot (20th century)