Cantor's Diagonal Argument - General Sets

General Sets

A generalized form of the diagonal argument was used by Cantor to prove Cantor's theorem: for every set S the power set of S, i.e., the set of all subsets of S (here written as P(S)), is larger than S itself. This proof proceeds as follows:

Let f be any function from S to P(S). It suffices to prove f cannot be surjective. That means that some member T of P(S), i.e., some subset of S, is not in the image of f. As a candidate consider the set:

For every s in S, either s is in T or not. If s is in T, then by definition of T, s is not in f(s), so T is not equal to f(s). On the other hand, if s is not in T, then by definition of T, s is in f(s), so again T is not equal to f(s). For a more complete account of this proof, see Cantor's theorem.

Read more about this topic:  Cantor's Diagonal Argument

Famous quotes containing the words general and/or sets:

    That sort of half sigh, which, accompanied by two or three slight nods of the head, is pity’s small change in general society.
    Charles Dickens (1812–1870)

    The believing mind reaches its perihelion in the so-called Liberals. They believe in each and every quack who sets up his booth in the fairgrounds, including the Communists. The Communists have some talents too, but they always fall short of believing in the Liberals.
    —H.L. (Henry Lewis)