Examples
The Cantor set itself is of course a Cantor space. But the canonical example of a Cantor space is the countably infinite topological product of the discrete 2-point space {0, 1}. This is usually written as or 2ω (where 2 denotes the 2-element set {0,1} with the discrete topology). A point in 2ω is an infinite binary sequence, that is a sequence which assumes only the values 0 or 1. Given such a sequence a1, a2, a3,..., one can map it to the real number
This mapping gives a homeomorphism from 2ω onto the Cantor set, demonstrating that 2ω is indeed a Cantor space.
Cantor spaces occur in abundance in real analysis. For example they exist as subspaces in every perfect, complete metric space. (To see this, note that in such a space, any non-empty perfect set contains two disjoint non-empty perfect subsets of arbitrarily small diameter, and so one can imitate the construction of the usual Cantor set.) Also, every uncountable, separable, completely metrizable space contains Cantor spaces as subspaces. This includes most of the common type of spaces in real analysis.
Read more about this topic: Cantor Space
Famous quotes containing the word examples:
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)