Cantor Space - Characterization

Characterization

A topological characterization of Cantor spaces is given by Brouwer's theorem:

Any two non-empty compact Hausdorff spaces without isolated points and having countable bases consisting of clopen sets are homeomorphic to each other.

The topological property of having a base consisting of clopen sets is sometimes known as "zero-dimensionality". Brouwer's theorem can be restated as:

A topological space is a Cantor space if and only if it is non-empty, perfect, compact, totally disconnected, and metrizable.

This theorem is also equivalent (via Stone's representation theorem for Boolean algebras) to the fact that any two countable atomless Boolean algebras are isomorphic.

Read more about this topic:  Cantor Space