Construction and Formula of The Ternary Set
The Cantor ternary set is created by repeatedly deleting the open middle thirds of a set of line segments. One starts by deleting the open middle third (1⁄3, 2⁄3) from the interval, leaving two line segments: ∪ . Next, the open middle third of each of these remaining segments is deleted, leaving four line segments: ∪ ∪ ∪ . This process is continued ad infinitum, where the nth set
The Cantor ternary set contains all points in the interval that are not deleted at any step in this infinite process.
The first six steps of this process are illustrated below.
An explicit formula for the Cantor set is
Let us note that this description of the Cantor set does not characterize the complement of the Cantor set exactly, since the sets given by the formula
are not disjoint.
The proof of the formula above is done by the idea of self-similarity transformations and can be found in detail.
Read more about this topic: Cantor Set
Famous quotes containing the words construction, formula and/or set:
“No real vital character in fiction is altogether a conscious construction of the author. On the contrary, it may be a sort of parasitic growth upon the authors personality, developing by internal necessity as much as by external addition.”
—T.S. (Thomas Stearns)
“But suppose, asks the student of the professor, we follow all your structural rules for writing, what about that something else that brings the book alive? What is the formula for that? The formula for that is not included in the curriculum.”
—Fannie Hurst (18891968)
“They roused him with muffinsthey roused him with ice
They roused him with mustard and cress
They roused him with jam and judicious advice
They set him conundrums to guess.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)