Second Quantization: Field Theory
Quantum mechanics was successful at describing non-relativistic systems with fixed numbers of particles, but a new framework was needed to describe systems in which particles can be created or destroyed, for example, the electromagnetic field, considered as a collection of photons. It was eventually realized that special relativity was inconsistent with single-particle quantum mechanics, so that all particles are now described relativistically by quantum fields.
When the canonical quantization procedure is applied to a field, such as the electromagnetic field, the classical field variables become quantum operators. Thus, the normal modes comprising the amplitude of the field become quantized, and the quanta are identified with individual particles or excitations. For example, the quanta of the electromagnetic field are identified with photons. Unlike first quantization, conventional second quantization is completely unambiguous, in effect a functor.
Historically, quantizing the classical theory of a single particle gave rise to a wavefunction. The classical equations of motion of a field are typically identical in form to the (quantum) equations for the wave-function of one of its quanta. For example, the Klein-Gordon equation is the classical equation of motion for a free scalar field, but also the quantum equation for a scalar particle wave-function. This meant that quantizing a field appeared to be similar to quantizing a theory that was already quantized, leading to the fanciful term second quantization in the early literature, which is still used to describe field quantization, even though the modern interpretation detailed is different.
One drawback to canonical quantization for a relativistic field is that by relying on the Hamiltonian to determine time dependence, relativistic invariance is no longer manifest. Thus it is necessary to check that relativistic invariance is not lost. Alternatively, the Feynman integral approach is available for quantizing relativistic fields, and is manifestly invariant. For non-relativistic field theories, such as those used in condensed matter physics, Lorentz invariance is not an issue.
Read more about this topic: Canonical Quantization
Famous quotes containing the words field and/or theory:
“Give me the splendid silent sun
with all his beams full-dazzling,
Give me juicy autumnal fruit ripe and red from the orchard,
Give me a field where the unmowd grass grows,
Give me an arbor, give me the trellisd grape,
Give me fresh corn and wheat, give me serene-moving animals teaching content,”
—Walt Whitman (18191892)
“It makes no sense to say what the objects of a theory are,
beyond saying how to interpret or reinterpret that theory in another.”
—Willard Van Orman Quine (b. 1908)