Canonical Quantization - Mathematical Quantization

Mathematical Quantization

The classical theory is described using a spacelike foliation of spacetime with the state at each slice being described by an element of a symplectic manifold with the time evolution given by the symplectomorphism generated by a Hamiltonian function over the symplectic manifold. The quantum algebra of "operators" is an ħ-deformation of the algebra of smooth functions over the symplectic space such that the leading term in the Taylor expansion over ħ of the commutator expressed in the phase space formulation is {A, B}. (Here, the curly braces denote the Poisson bracket. The subleading terms are all encoded in the Moyal bracket, the suitable quantum deformation of the Poisson bracket.) In general, for the quantities (observables) involved, and providing the arguments of such brackets, ħ-deformations are highly nonunique—quantization is an "art", and is specified by the physical context. (Two different quantum systems may represent two different, inequivalent, deformations of the same classical limit, ħ → 0.)

Now, one looks for unitary representations of this quantum algebra. With respect to such a unitary representation, a symplectomorphism in the classical theory would now deform to a (metaplectic) unitary transformation. In particular, the time evolution symplectomorphism generated by the classical Hamiltonian deforms to a unitary transformation generated by the corresponding quantum Hamiltonian.

A further generalization is to consider a Poisson manifold instead of a symplectic space for the classical theory and perform an ħ-deformation of the corresponding Poisson algebra or even Poisson supermanifolds.

Read more about this topic:  Canonical Quantization

Famous quotes containing the word mathematical:

    What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.
    Boris Pasternak (1890–1960)