Canonical Ensemble - Quantum Mechanical Systems

Quantum Mechanical Systems

By applying the canonical partition function, one can easily obtain the corresponding results for a canonical ensemble of quantum mechanical systems. A quantum mechanical ensemble in general is described by a density matrix. Suppose the Hamiltonian H of interest is a self adjoint operator with only discrete spectrum. The energy levels are then the eigenvalues of H, corresponding to eigenvector . From the same considerations as in the classical case, the probability that a system from the ensemble will be in state is, for some constant . So the ensemble is described by the density matrix


\rho = \sum p_n | \psi _n \rangle \langle \psi_n | = \sum C e^{- \beta E_n} | \psi _n \rangle \langle \psi_n|

(Technical note: a density matrix must be trace-class, therefore we have also assumed that the sequence of energy eigenvalues diverges sufficiently fast.) A density operator is assumed to have trace 1, so

which means

Q is the quantum-mechanical version of the canonical partition function. Putting C back into the equation for ρ gives


\rho = \frac{1}{\sum e^{- \beta E_n}} \sum e^{- \beta E_n} | \psi _n \rangle \langle \psi_n| =
\frac{1}{ \operatorname{Tr}( e^{- \beta H} ) } e^{- \beta H} .

By the assumption that the energy eigenvalues diverge, the Hamiltonian H is an unbounded operator, therefore we have invoked the Borel functional calculus to exponentiate the Hamiltonian H. Alternatively, in non-rigorous fashion, one can consider that to be the exponential power series.

Notice the quantity

is the quantum mechanical counterpart of the canonical partition function, being the normalization factor for the mixed state of interest.

The density operator ρ obtained above therefore describes the (mixed) state of a canonical ensemble of quantum mechanical systems. As with any density operator, if A is a physical observable, then its expected value is

Read more about this topic:  Canonical Ensemble

Famous quotes containing the words quantum, mechanical and/or systems:

    A personality is an indefinite quantum of traits which is subject to constant flux, change, and growth from the birth of the individual in the world to his death. A character, on the other hand, is a fixed and definite quantum of traits which, though it may be interpreted with slight differences from age to age and actor to actor, is nevertheless in its essentials forever fixed.
    Hubert C. Heffner (1901–1985)

    No sociologist ... should think himself too good, even in his old age, to make tens of thousands of quite trivial computations in his head and perhaps for months at a time. One cannot with impunity try to transfer this task entirely to mechanical assistants if one wishes to figure something, even though the final result is often small indeed.
    Max Weber (1864–1920)

    The only people who treasure systems are those whom the whole truth evades, who want to catch it by the tail. A system is just like truth’s tail, but the truth is like a lizard. It will leave the tail in your hand and escape; it knows that it will soon grow another tail.
    Ivan Sergeevich Turgenev (1818–1883)