Construction
A camera lens may be made from a number of elements: from one, as in the Box Brownie's meniscus lens, to over 20 in the more complex zooms. These elements may themselves comprise a group of lenses cemented together.
The front element is critical to the performance of the whole assembly. In all modern lenses the surface is coated to reduce abrasion, flare, and surface reflectance, and to adjust color balance. To minimize aberration, the curvature is usually set so that the angle of incidence and the angle of refraction are equal. In a prime lens this is easy, but in a zoom there is always a compromise.
The lens usually is focused by adjusting the distance from the lens assembly to the image plane, or by moving elements of the lens assembly. To improve performance, some lenses have a cam system that adjusts the distance between the groups as the lens is focused. Manufacturers call this different things. Nikon calls it CRC (close range correction), while Hasselblad and Mamiya call it FLE (floating lens element).
Glass is the most common material used to construct lens elements, due to its good optical properties and resistance to scratching. Other materials are also used, such as quartz glass, fluorite, plastics like acrylic (Plexiglass), and even germanium and meteoritic glass. Plastics allow the manufacturing of strongly aspherical lens elements which are difficult or impossible to manufacture in glass, and which simplify or improve lens manufacturing and performance. Plastics are not used for the outermost elements of all but the cheapest lenses as they scratch easily. Molded plastic lenses have been used for the cheapest disposable cameras for many years, and have acquired a bad reputation: manufacturers of quality optics tend to use euphemisms such as "optical resin". However many modern, high performance (and high priced) lenses from popular manufacturers include molded or hybrid aspherical elements, so it is not true that all lenses with plastic elements are of low photographic quality.
The 1951 USAF resolution test chart is one way to measure the resolving power of a lens. The quality of the material, coatings, and build affect the resolution. Lens resolution is ultimately limited by diffraction, and very few photographic lenses approach this resolution. Ones that do are called "diffraction limited" and are usually extremely expensive.
Today, most lenses are multi-coated in order to minimize lens flare and other unwanted effects. Some lenses have a UV coating to keep out the ultraviolet light that could taint color. Most modern optical cements for bonding glass elements also block UV light, negating the need for a UV filter. UV photographers must go to great lengths to find lenses with no cement or coatings.
A lens will most often have an aperture adjustment mechanism, usually an iris diaphragm, to regulate the amount of light that passes. In early camera models a rotating plate or slider with different sized holes was used. These Waterhouse stops may still be found on modern, specialized lenses. A shutter, to regulate the time during which light may pass, may be incorporated within the lens assembly (for better quality imagery), within the camera, or even, rarely, in front of the lens. Some cameras with leaf shutters in the lens omit the aperture, and the shutter does double duty.
Read more about this topic: Camera Lens
Famous quotes containing the word construction:
“Striving toward a goal puts a more pleasing construction on our advance toward death.”
—Mason Cooley (b. 1927)
“When the leaders choose to make themselves bidders at an auction of popularity, their talents, in the construction of the state, will be of no service. They will become flatterers instead of legislators; the instruments, not the guides, of the people.”
—Edmund Burke (17291797)
“Theres no art
To find the minds construction in the face:
He was a gentleman on whom I built
An absolute trust.”
—William Shakespeare (15641616)