Burnside's Problem - General Burnside Problem

General Burnside Problem

A group G is called periodic if every element has finite order; in other words, for each g in G, there exists some positive integer n such that gn = 1. Clearly, every finite group is periodic. There exist easily defined groups such as the p∞-group which are infinite periodic groups; but the latter group cannot be finitely generated.

The general Burnside problem can be posed as follows:

If G is a periodic group, and G is finitely generated, then must G necessarily be a finite group?

This question was answered in the negative in 1964 by Evgeny Golod and Igor Shafarevich, who gave an example of an infinite p-group that is finitely generated (see Golod-Shafarevich theorem). However, the orders of the elements of this group are not a priori bounded by a single constant.

Read more about this topic:  Burnside's Problem

Famous quotes containing the words general and/or problem:

    A point has been reached where the peoples of the Americas must take cognizance of growing ill-will, of marked trends toward aggression, of increasing armaments, of shortening tempers—a situation which has in it many of the elements that lead to the tragedy of general war.... Peace is threatened by those who seek selfish power.
    Franklin D. Roosevelt (1882–1945)

    Involuntary mental hospitalization is like slavery. Refining the standards for commitment is like prettifying the slave plantations. The problem is not how to improve commitment, but how to abolish it.
    Thomas Szasz (b. 1920)