Burnside's Problem - General Burnside Problem

General Burnside Problem

A group G is called periodic if every element has finite order; in other words, for each g in G, there exists some positive integer n such that gn = 1. Clearly, every finite group is periodic. There exist easily defined groups such as the p∞-group which are infinite periodic groups; but the latter group cannot be finitely generated.

The general Burnside problem can be posed as follows:

If G is a periodic group, and G is finitely generated, then must G necessarily be a finite group?

This question was answered in the negative in 1964 by Evgeny Golod and Igor Shafarevich, who gave an example of an infinite p-group that is finitely generated (see Golod-Shafarevich theorem). However, the orders of the elements of this group are not a priori bounded by a single constant.

Read more about this topic:  Burnside's Problem

Famous quotes containing the words general and/or problem:

    As a general rule never take your whole fee in advance, nor any more than a small retainer. When fully paid beforehand, you are more than a common mortal if you can feel the same interest in the case, as if something was still in prospect for you, as well as for your client.
    Abraham Lincoln (1809–1865)

    Like the effects of industrial pollution ... the AIDS crisis is evidence of a world in which nothing important is regional, local, limited; in which everything that can circulate does, and every problem is, or is destined to become, worldwide.
    Susan Sontag (b. 1933)