Relation Between The Two Notions
It follows immediately from the definitions that a bundle map over M (in the first sense) is the same thing as a bundle map covering the identity map of M.
Conversely, general bundle maps can be reduced to bundle maps over a fixed base space using the notion of a pullback bundle. If πF:F→ N is a fiber bundle over N and f:M→ N is a continuous map, then the pullback of F by f is a fiber bundle f*F over M whose fiber over x is given by (f*F)x.= Ff(x). It then follows that a bundle map from E to F covering f is the same thing as a bundle map from E to f*F over M.
Read more about this topic: Bundle Map
Famous quotes containing the words relation and/or notions:
“Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.”
—Honoré De Balzac (17991850)
“Your notions of friendship are new to me; I believe every man is born with his quantum, and he cannot give to one without robbing another. I very well know to whom I would give the first place in my friendship, but they are not in the way, I am condemned to another scene, and therefore I distribute it in pennyworths to those about me, and who displease me least, and should do the same to my fellow prisoners if I were condemned to a jail.”
—Jonathan Swift (16671745)