Relation Between The Two Notions
It follows immediately from the definitions that a bundle map over M (in the first sense) is the same thing as a bundle map covering the identity map of M.
Conversely, general bundle maps can be reduced to bundle maps over a fixed base space using the notion of a pullback bundle. If πF:F→ N is a fiber bundle over N and f:M→ N is a continuous map, then the pullback of F by f is a fiber bundle f*F over M whose fiber over x is given by (f*F)x.= Ff(x). It then follows that a bundle map from E to F covering f is the same thing as a bundle map from E to f*F over M.
Read more about this topic: Bundle Map
Famous quotes containing the words relation between, relation and/or notions:
“There is a certain standard of grace and beauty which consists in a certain relation between our nature, such as it is, weak or strong, and the thing which pleases us. Whatever is formed according to this standard pleases us, be it house, song, discourse, verse, prose, woman, birds, rivers, trees, room, dress, and so on. Whatever is not made according to this standard displeases those who have good taste.”
—Blaise Pascal (16231662)
“Every word was once a poem. Every new relation is a new word.”
—Ralph Waldo Emerson (18031882)
“Even the simple act that we call going to visit a person of our acquaintance is in part an intellectual act. We fill the physical appearance of the person we see with all the notions we have about him, and in the totality of our impressions about him, these notions play the most important role.”
—Marcel Proust (18711922)