Bullet Cluster - Overview

Overview

The major components of the cluster pair—stars, gas and the putative dark matter—behave differently during collision, allowing them to be studied separately. The stars of the galaxies, observable in visible light, were not greatly affected by the collision, and most passed right through, gravitationally slowed but not otherwise altered. The hot gas of the two colliding components, seen in X-rays, represents most of the mass of the ordinary (baryonic) matter in the cluster pair. The gases interact electromagnetically, causing the gases of both clusters to slow much more than the stars. The third component, the dark matter, was detected indirectly by the gravitational lensing of background objects. In theories without dark matter, such as Modified Newtonian Dynamics (MOND), the lensing would be expected to follow the baryonic matter; i.e. the X-ray gas. However, the lensing is strongest in two separated regions near (possibly coincident with) the visible galaxies. This provides support for the idea that most of the mass in the cluster pair is in the form of collisionless dark matter.

The Bullet Cluster is one of the hottest known clusters of galaxies. It provides an observable constraint for cosmological models, which may diverge at temperatures beyond their predicted critical cluster temperature. Observed from Earth, the subcluster passed through the cluster center 150 million years ago creating a "bow-shaped shock wave located near the right side of the cluster" formed as "70 million degree Celsius gas in the sub-cluster plowed through 100 million degree Celsius gas in the main cluster at a speed of about 6 million miles per hour". This energy output is equivalent to that of 10 typical quasars.

Read more about this topic:  Bullet Cluster