Examples
Let G be the general linear group GLn of invertible matrices with entries in some algebraically closed field, which is a reductive group. Then the Weyl group W is isomorphic to the symmetric group Sn on n letters, with permutation matrices as representatives. In this case, we can take B to be the subgroup of upper triangular invertible matrices, so Bruhat decomposition says that one can write any invertible matrix A as a product U1PU2 where U1 and U2 are upper triangular, and P is a permutation matrix. Writing this as P = U1-1AU2-1, this says that any invertible matrix can be transformed into a permutation matrix via a series of row and column operations, where we are only allowed to add row i (resp. column i) to row j (resp. column j) if i>j (resp. i
The special linear group SLn of invertible matrices with determinant 1 is a semisimple group, and hence reductive. In this case, W is still isomorphic to the symmetric group Sn. However, the determinant of a permutation matrix is the sign of the permutation, so to represent an odd permutation in SLn, we can take one of the nonzero elements to be -1 instead of 1. Here B is the subgroup of upper triangular matrices with determinant 1, so the interpretation of Bruhat decomposition in this case is similar to the case of GLn.
Read more about this topic: Bruhat Decomposition
Famous quotes containing the word examples:
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)