Examples
Let G be the general linear group GLn of invertible matrices with entries in some algebraically closed field, which is a reductive group. Then the Weyl group W is isomorphic to the symmetric group Sn on n letters, with permutation matrices as representatives. In this case, we can take B to be the subgroup of upper triangular invertible matrices, so Bruhat decomposition says that one can write any invertible matrix A as a product U1PU2 where U1 and U2 are upper triangular, and P is a permutation matrix. Writing this as P = U1-1AU2-1, this says that any invertible matrix can be transformed into a permutation matrix via a series of row and column operations, where we are only allowed to add row i (resp. column i) to row j (resp. column j) if i>j (resp. i
The special linear group SLn of invertible matrices with determinant 1 is a semisimple group, and hence reductive. In this case, W is still isomorphic to the symmetric group Sn. However, the determinant of a permutation matrix is the sign of the permutation, so to represent an odd permutation in SLn, we can take one of the nonzero elements to be -1 instead of 1. Here B is the subgroup of upper triangular matrices with determinant 1, so the interpretation of Bruhat decomposition in this case is similar to the case of GLn.
Read more about this topic: Bruhat Decomposition
Famous quotes containing the word examples:
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)