Brouwer Fixed-point Theorem - History

History

The Brouwer fixed point theorem was one of the early achievements of algebraic topology, and is the basis of more general fixed point theorems which are important in functional analysis. The case n = 3 first was proved by Piers Bohl in 1904 (published in Journal für die reine und angewandte Mathematik). It was later proved by L. E. J. Brouwer in 1909. Jacques Hadamard proved the general case in 1910, and Brouwer found a different proof in the same year. Since these early proofs were all non-constructive indirect proofs, they ran contrary to Brouwer's intuitionist ideals. Methods to construct (approximations to) fixed points guaranteed by Brouwer's theorem are now known, however; see for example (Karamadian 1977) and (Istrăţescu 1981).

Read more about this topic:  Brouwer Fixed-point Theorem

Famous quotes containing the word history:

    the future is simply nothing at all. Nothing has happened to the present by becoming past except that fresh slices of existence have been added to the total history of the world. The past is thus as real as the present.
    Charlie Dunbar Broad (1887–1971)

    We don’t know when our name came into being or how some distant ancestor acquired it. We don’t understand our name at all, we don’t know its history and yet we bear it with exalted fidelity, we merge with it, we like it, we are ridiculously proud of it as if we had thought it up ourselves in a moment of brilliant inspiration.
    Milan Kundera (b. 1929)

    It’s nice to be a part of history but people should get it right. I may not be perfect, but I’m bloody close.
    John Lydon (formerly Johnny Rotten)