Probability of HCP Distribution
High card points (HCP) are usually counted using the Milton Work scale of 4/3/2/1 points for each Ace/King/Queen/Jack respectively. The a priori probabilities that a given hand contains no more than a specified number of HCP is given in the table below. To find the likelihood of a certain point range, one simply subtracts the two relevant cumulative probabilities. So, the likelihood of being dealt a 12-19 HCP hand (ranges inclusive) is the probability of having at most 19 HCP minus the probability of having at most 11 hcp, or: 0.986 − 0.652 = 0.334.
HCP | Probability | HCP | Probability | HCP | Probability | HCP | Probability | HCP | Probability | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.0036 | 8 | 0.3748 | 16 | 0.9355 | 24 | 0.9995 | 32 | 1.0000 | ||||
1 | 0.0115 | 9 | 0.4683 | 17 | 0.9591 | 25 | 0.9998 | 33 | 1.0000 | ||||
2 | 0.0251 | 10 | 0.5624 | 18 | 0.9752 | 26 | 0.9999 | 34 | 1.0000 | ||||
3 | 0.0497 | 11 | 0.6518 | 19 | 0.9855 | 27 | 1.0000 | 35 | 1.0000 | ||||
4 | 0.0882 | 12 | 0.7321 | 20 | 0.9920 | 28 | 1.0000 | 36 | 1.0000 | ||||
5 | 0.1400 | 13 | 0.8012 | 21 | 0.9958 | 29 | 1.0000 | 37 | 1.0000 | ||||
6 | 0.2056 | 14 | 0.8582 | 22 | 0.9979 | 30 | 1.0000 | ||||||
7 | 0.2858 | 15 | 0.9024 | 23 | 0.9990 | 31 | 1.0000 |
Read more about this topic: Bridge Probabilities
Famous quotes containing the words probability of, probability and/or distribution:
“Liberty is a blessing so inestimable, that, wherever there appears any probability of recovering it, a nation may willingly run many hazards, and ought not even to repine at the greatest effusion of blood or dissipation of treasure.”
—David Hume (17111776)
“Legends of prediction are common throughout the whole Household of Man. Gods speak, spirits speak, computers speak. Oracular ambiguity or statistical probability provides loopholes, and discrepancies are expunged by Faith.”
—Ursula K. Le Guin (b. 1929)
“The question for the country now is how to secure a more equal distribution of property among the people. There can be no republican institutions with vast masses of property permanently in a few hands, and large masses of voters without property.... Let no man get by inheritance, or by will, more than will produce at four per cent interest an income ... of fifteen thousand dollars] per year, or an estate of five hundred thousand dollars.”
—Rutherford Birchard Hayes (18221893)