Brewster's Angle - Explanation

Explanation

When light encounters a boundary between two media with different refractive indices, some of it is usually reflected as shown in the figure above. The fraction that is reflected is described by the Fresnel equations, and is dependent upon the incoming light's polarization and angle of incidence.

The Fresnel equations predict that light with the p polarization (electric field polarized in the same plane as the incident ray and the surface normal) will not be reflected if the angle of incidence is

where n1 is the refractive index of the initial medium through which the light propagates (the "incident medium"), and n2 is the index of the other medium. This equation is known as Brewster's law, and the angle defined by it is Brewster's angle.

The physical mechanism for this can be qualitatively understood from the manner in which electric dipoles in the media respond to p-polarized light. One can imagine that light incident on the surface is absorbed, and then reradiated by oscillating electric dipoles at the interface between the two media. The polarization of freely propagating light is always perpendicular to the direction in which the light is travelling. The dipoles that produce the transmitted (refracted) light oscillate in the polarization direction of that light. These same oscillating dipoles also generate the reflected light. However, dipoles do not radiate any energy in the direction of the dipole moment. Consequently, if the direction of the refracted light is perpendicular to the direction in which the light is predicted to be specularly reflected, the dipoles cannot create any reflected light.

With simple geometry this condition can be expressed as:

where θ1 is the angle of incidence and θ2 is the angle of refraction.

Using Snell's law,

one can calculate the incident angle θ1 = θB at which no light is reflected:

Solving for θB gives:

For a glass medium (n2 ≈ 1.5) in air (n1 ≈ 1), Brewster's angle for visible light is approximately 56°, while for an air-water interface (n2 ≈ 1.33), it is approximately 53°. Since the refractive index for a given medium changes depending on the wavelength of light, Brewster's angle will also vary with wavelength.

The phenomenon of light being polarized by reflection from a surface at a particular angle was first observed by Étienne-Louis Malus in 1808. He attempted to relate the polarizing angle to the refractive index of the material, but was frustrated by the inconsistent quality of glasses available at that time. In 1815, Brewster experimented with higher-quality materials and showed that this angle was a function of the refractive index, defining Brewster's law.

Brewster's angle is often referred to as the "polarizing angle", because light that reflects from a surface at this angle is entirely polarized perpendicular to the incident plane ("s-polarized") A glass plate or a stack of plates placed at Brewster's angle in a light beam can, thus, be used as a polarizer. The concept of a polarizing angle can be extended to the concept of a Brewster wavenumber to cover planar interfaces between two linear bianisotropic materials.

Read more about this topic:  Brewster's Angle

Famous quotes containing the word explanation:

    Are cans constitutionally iffy? Whenever, that is, we say that we can do something, or could do something, or could have done something, is there an if in the offing—suppressed, it may be, but due nevertheless to appear when we set out our sentence in full or when we give an explanation of its meaning?
    —J.L. (John Langshaw)

    To develop an empiricist account of science is to depict it as involving a search for truth only about the empirical world, about what is actual and observable.... It must involve throughout a resolute rejection of the demand for an explanation of the regularities in the observable course of nature, by means of truths concerning a reality beyond what is actual and observable, as a demand which plays no role in the scientific enterprise.
    Bas Van Fraassen (b. 1941)

    Herein is the explanation of the analogies, which exist in all the arts. They are the re-appearance of one mind, working in many materials to many temporary ends. Raphael paints wisdom, Handel sings it, Phidias carves it, Shakspeare writes it, Wren builds it, Columbus sails it, Luther preaches it, Washington arms it, Watt mechanizes it. Painting was called “silent poetry,” and poetry “speaking painting.” The laws of each art are convertible into the laws of every other.
    Ralph Waldo Emerson (1803–1882)