Transcendental and Logarithmic Branch Points
Suppose that g is a global analytic function defined on a punctured disc around z0. Then g has a transcendental branch point if z0 is an essential singularity of g such that analytic continuation of a function element once around some simple closed curve surrounding the point z0 produces a different function element. An example of a transcendental branch point is the origin for the multi-valued function
for some integer k > 1. Here the monodromy around the origin is finite.
By contrast, the point z0 is called a logarithmic branch point if it is impossible to return to the original function element by analytic continuation along a curve with nonzero winding number about z0. This is so called because the typical example of this phenomenon is the branch point of the complex logarithm at the origin. Going once counterclockwise around a simple closed curve encircling the origin, the complex logarithm is incremented by 2πi. Encircling a loop with winding number w, the logarithm is incremented by 2πi w.
There is no corresponding notion of ramification for transcendental and logarithmic branch points since the associated covering Riemann surface cannot be analytically continued to a cover of the branch point itself. Such covers are therefore always unramified.
Read more about this topic: Branch Point
Famous quotes containing the words branch and/or points:
“In communist society, where nobody has one exclusive sphere of activity but each can become accomplished in any branch he wishes, society regulates the general production and thus makes it possible for me to do one thing today and another tomorrow, to hunt in the morning, fish in the afternoon, rear cattle in the evening, criticize after dinner, just as I have a mind, without ever becoming hunter, fisherman, shepherd or critic.”
—Karl Marx (18181883)
“the
Decapitated exclamation points in that Other Womans eyes.”
—Gwendolyn Brooks (b. 1917)