BPP (complexity) - Definition

Definition

A language L is in BPP if and only if there exists a probabilistic Turing machine M, such that

  • M runs for polynomial time on all inputs
  • For all x in L, M outputs 1 with probability greater than or equal to 2/3
  • For all x not in L, M outputs 1 with probability less than or equal to 1/3

Unlike the complexity class ZPP, the machine M is required to run for polynomial time on all inputs, regardless of the outcome of the random coin flips.

Alternatively, BPP can be defined using only deterministic Turing machines. A language L is in BPP if and only if there exists a polynomial p and deterministic Turing machine M, such that

  • M runs for polynomial time on all inputs
  • For all x in L, the fraction of strings y of length p(|x|) which satisfy M(x,y) = 1 is greater than or equal to 2/3
  • For all x in not in L, the fraction of strings y of length p(|x|) which satisfy M(x,y) = 1 is less than or equal to 1/3

In this definition, the string y corresponds to the output of the random coin flips that the probabilistic Turing machine would have made. For some applications this definition is preferable since it does not mention probabilistic Turing machines.

Read more about this topic:  BPP (complexity)

Famous quotes containing the word definition:

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)