Definition
A language L is in BPP if and only if there exists a probabilistic Turing machine M, such that
- M runs for polynomial time on all inputs
- For all x in L, M outputs 1 with probability greater than or equal to 2/3
- For all x not in L, M outputs 1 with probability less than or equal to 1/3
Unlike the complexity class ZPP, the machine M is required to run for polynomial time on all inputs, regardless of the outcome of the random coin flips.
Alternatively, BPP can be defined using only deterministic Turing machines. A language L is in BPP if and only if there exists a polynomial p and deterministic Turing machine M, such that
- M runs for polynomial time on all inputs
- For all x in L, the fraction of strings y of length p(|x|) which satisfy M(x,y) = 1 is greater than or equal to 2/3
- For all x in not in L, the fraction of strings y of length p(|x|) which satisfy M(x,y) = 1 is less than or equal to 1/3
In this definition, the string y corresponds to the output of the random coin flips that the probabilistic Turing machine would have made. For some applications this definition is preferable since it does not mention probabilistic Turing machines.
Read more about this topic: BPP (complexity)
Famous quotes containing the word definition:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)