BPP (complexity) - Complexity-theoretic Properties

Complexity-theoretic Properties

It is known that BPP is closed under complement; that is, BPP = co-BPP. BPP is low for itself, meaning that a BPP machine with the power to solve BPP problems instantly (a BPP oracle machine) is not any more powerful than the machine without this extra power. In symbols, BPPBPP = BPP.

The relationship between BPP and NP is unknown: it is not known if BPP is a subset of NP, NP is a subset of BPP or if they are incomparable. If NP is contained in BPP, which is considered unlikely since it would imply practical solutions for NP-complete problems, then NP = RP and PHBPP.

It is known that RP is a subset of BPP, and BPP is a subset of PP. It is not known whether those two are strict subsets, since we don't even know if P is a strict subset of PSPACE. BPP is contained in the second level of the polynomial hierarchy and therefore it is contained in PH. More precisely, the Sipser–Lautemann theorem states that BPP ⊆ Σ2 ∩ Π2. As a result, P = NP leads to P = BPP since PH collapses to P in this case. Thus either P = BPP or PNP or both.

Adleman's theorem states that membership in any language in BPP can be determined by a family of polynomial-size Boolean circuits, which means BPP is contained in P/poly. Indeed, as a consequence of the proof of this fact, every BPP algorithm operating on inputs of bounded length can be derandomized into a deterministic algorithm using a fixed string of random bits. Finding this string may be expensive, however.

Relative to oracles, we know that there exist oracles A and B, such that PA = BPPA and PB ≠ BPPB. Moreover, relative to a random oracle with probability 1, P = BPP and BPP is strictly contained in NP and co-NP.

Read more about this topic:  BPP (complexity)

Famous quotes containing the word properties:

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)