Boy's Surface - Parametrization of Boy's Surface

Parametrization of Boy's Surface

Boy's surface can be parametrized in several ways. One parametrization, discovered by Rob Kusner and Robert Bryant, is the following: given a complex number z whose magnitude is less than or equal to one, let

\begin{align} g_1 &= -{3 \over 2} \mathrm{Im} \left\\ g_2 &= -{3 \over 2} \mathrm{Re} \left\\ g_3 &= \mathrm{Im} \left - {1 \over 2}\\
\end{align}

so that

where x, y, and z are the desired Cartesian coordinates of a point on the Boy's surface.

If one performs an inversion of this parametrization centered on the triple point, one obtains a complete minimal surface with three "ends" (that's how this parametrization was discovered naturally). This implies that the Bryant-Kusner parametrization of Boy's surfaces is "optimal" in the sense that it is the "least bent" immersion of a projective plane into three-space.

Read more about this topic:  Boy's Surface

Famous quotes containing the words boy and/or surface:

    A Jewish man with parents alive is a fifteen-year-old boy, and will remain a fifteen-year-old boy till they die.
    Philip Roth (20th century)

    All beauties contain, like all possible phenomena, something eternal and something transitory,—something absolute and something particular. Absolute and eternal beauty does not exist, or rather it is only an abstraction skimmed from the common surface of different sorts of beauty. The particular element of each beauty comes from the emotions, and as we each have our own particular emotions, so we have our beauty.
    Charles Baudelaire (1821–1867)