Bounded Operator - Topological Vector Spaces

Topological Vector Spaces

The boundedness condition for linear operators on normed spaces can be restated. An operator is bounded if it takes every bounded set to a bounded set, and here is meant the more general condition of boundedness for sets in a topological vector space (TVS): a set is bounded if and only if it is absorbed by every neighborhood of 0. Note that the two notions of boundedness coincide for locally convex spaces.

This formulation allows one to define bounded operators between general topological vector spaces as an operator which takes bounded sets to bounded sets. In this context, it is still true that every continuous map is bounded, however the converse fails; a bounded operator need not be continuous. Clearly, this also means that boundedness is no longer equivalent to Lipschitz continuity in this context.

A converse does hold when the domain is pseudometrisable, a case which includes Fréchet spaces. For LF spaces, a weaker converse holds; any bounded linear map from an LF space is sequentially continuous.

Read more about this topic:  Bounded Operator

Famous quotes containing the word spaces:

    Surely, we are provided with senses as well fitted to penetrate the spaces of the real, the substantial, the eternal, as these outward are to penetrate the material universe. Veias, Menu, Zoroaster, Socrates, Christ, Shakespeare, Swedenborg,—these are some of our astronomers.
    Henry David Thoreau (1817–1862)