Properties of The Space of Bounded Linear Operators
- The space of all bounded linear operators from U to V is denoted by B(U,V) and is a normed vector space.
- If V is Banach, then so is B(U,V),
- from which it follows that dual spaces are Banach.
- For any A in B(U,V), the kernel of A is a closed linear subspace of U.
- If B(U,V) is Banach and U is nontrivial, then V is Banach.
Read more about this topic: Bounded Operator
Famous quotes containing the words properties of the, properties of, properties, space and/or bounded:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“No being exists or can exist which is not related to space in some way. God is everywhere, created minds are somewhere, and body is in the space that it occupies; and whatever is neither everywhere nor anywhere does not exist. And hence it follows that space is an effect arising from the first existence of being, because when any being is postulated, space is postulated.”
—Isaac Newton (16421727)
“Me, whats that after all? An arbitrary limitation of being bounded by the people before and after and on either side. Where they leave off, I begin, and vice versa.”
—Russell Hoban (b. 1925)