Boron Group - History

History

The boron group has had many names over the years. According to former conventions it was Group IIIB in the European naming system and Group IIIA in the American. The group has also gained two collective names, "earth metals" and "triels". The latter name is derived from the Latin prefix tri- ("three") and refers to the three valence electrons that all of these elements, without exception, have in their valence shells.

Boron was known to the ancient Egyptians, but only in the mineral borax. The metalloid element was not known in its pure form until 1808, when Humphry Davy was able to extract it by the method of electrolysis. Davy devised an experiment in which he dissolved a boron-containing compound in water and sent an electric current through it, causing the elements of the compound to separate into their pure states. To produce larger quantities he shifted from electrolysis to reduction with sodium. Davy named the element boracium. At the same time two French chemists, Joseph Louis Gay-Lussac and Louis Jacques Thénard, used iron to reduce boric acid. The boron they produced was oxidized to boron oxide.

Aluminium, like boron, was first known in minerals before it was finally extracted from alum, a common mineral in some areas of the world. Antoine Lavoisier and Humphry Davy had each separately tried to extract it. Although neither succeeded, Davy had given the metal its current name. It was only in 1825 that the Danish scientist Hans Christian Ørsted successfully prepared a rather impure form of the element. Many improvements followed, a significant advance being made just two years later by Friedrich Wöhler, whose slightly modified procedure still yielded an impure product. The first pure sample of aluminium is credited to Henri Etienne Sainte-Claire Deville, who substituted sodium for potassium in the procedure. At that time aluminium was considered precious, and it was displayed next to such metals as gold and silver. The method used today, electrolysis of aluminium oxide dissolved in cryolite, was developed by Charles Martin Hall and Paul Héroult in the late 1880s.

Thallium, the heaviest stable element in the boron group, was discovered by William Crookes and Claude-Auguste Lamy in 1861. Unlike gallium and indium, thallium had not been predicted by Dmitri Mendeleev, having been discovered before Mendeleev invented the periodic table. As a result, no one was really looking for it until the 1850s when Crookes and Lamy were examining residues from sulfuric acid production. In the spectra they saw a completely new line, a streak of deep green, which Crookes named after the Greek word θαλλός (thallos), referring to a green shoot or twig. Lamy was able to produce larger amounts of the new metal and determined most of its chemical and physical properties.

Indium is the fourth element of the boron group but was discovered before the third, gallium, and after the fifth, thallium. In 1863 Ferdinand Reich and his assistant, Hieronymous Theodor Richter, were looking in a sample of the mineral zinc blende, also known as sphalerite (ZnS), for the spectroscopic lines of the newly discovered element thallium. Reich heated the ore in a coil of platinum metal and observed the lines that appeared in a spectroscope. Instead of the green thallium lines that he expected, he saw a new line of deep indigo-blue. Concluding that it must come from a new element, they named it after the characteristic indigo color it had produced.

Gallium minerals were not known before August 1875, when the element itself was discovered. It was one of the elements that the inventor of the periodic table, Dmitri Mendeleev, had predicted to exist six years earlier. While examining the spectroscopic lines in zinc blende the French chemist Paul Emile Lecoq de Boisbaudran found indications of a new element in the ore. In just three months he was able to produce a sample, which he purified by dissolving it in a potassium hydroxide (KOH) solution and sending an electric current through it. The next month he presented his findings to the French Academy of Sciences, naming the new element after the Greek name for Gaul, modern France.

It can be argued that the last confirmed element in the boron group, ununtrium, was not really "discovered", but "created" or synthesized. The element's synthesis is credited jointly to the Dubna Joint Institute for Nuclear Research team in Russia and the Lawrence Livermore National Laboratory in the United States, though it was the Dubna team who successfully conducted the experiment in August 2003. Element 113 (ununtrium) was discovered in the decay chain of element 115, or ununpentium, which produced a few precious atoms of ununtrium or "eka-thallium". The results were published in January of the following year. Since then around 13 atoms have been synthesized and various isotopes characterized.

Read more about this topic:  Boron Group

Famous quotes containing the word history:

    It is remarkable how closely the history of the apple tree is connected with that of man.
    Henry David Thoreau (1817–1862)

    ... in a history of spiritual rupture, a social compact built on fantasy and collective secrets, poetry becomes more necessary than ever: it keeps the underground aquifers flowing; it is the liquid voice that can wear through stone.
    Adrienne Rich (b. 1929)

    Let us not underrate the value of a fact; it will one day flower in a truth. It is astonishing how few facts of importance are added in a century to the natural history of any animal. The natural history of man himself is still being gradually written.
    Henry David Thoreau (1817–1862)