Boolean Satisfiability Problem
In computer science, satisfiability (often written in all capitals or abbreviated SAT) is the problem of determining if the variables of a given Boolean formula can be assigned in such a way as to make the formula evaluate to TRUE. Equally important is to determine whether no such assignments exist, which would imply that the function expressed by the formula is identically FALSE for all possible variable assignments. In this latter case, we would say that the function is unsatisfiable; otherwise it is satisfiable. For example, the formula a AND b is satisfiable because one can find the values a = TRUE and b = TRUE, which make (a AND b) = TRUE. To emphasize the binary nature of this problem, it is frequently referred to as Boolean or propositional satisfiability.
SAT was the first known example of an NP-complete problem. That briefly means that there is no known algorithm that efficiently solves all instances of SAT, and it is generally believed (but not proven, see P versus NP problem) that no such algorithm can exist. Further, a wide range of other naturally occurring decision and optimization problems can be transformed into instances of SAT. A class of algorithms called SAT solvers can efficiently solve a large enough subset of SAT instances to be useful in various practical areas such as circuit design and automatic theorem proving, by solving SAT instances made by transforming problems that arise in those areas. Extending the capabilities of SAT solving algorithms is an ongoing area of progress. However, no current such methods can efficiently solve all SAT instances.
Read more about Boolean Satisfiability Problem: Basic Definitions, Terminology and Applications, Runtime Behavior, Extensions of SAT, Self-reducibility, Algorithms For Solving SAT
Famous quotes containing the word problem:
“A serious problem in America is the gap between academe and the mass media, which is our culture. Professors of humanities, with all their leftist fantasies, have little direct knowledge of American life and no impact whatever on public policy.”
—Camille Paglia (b. 1947)