Boolean Algebra (structure) - Ideals and Filters

Ideals and Filters

An ideal of the Boolean algebra A is a subset I such that for all x, y in I we have x ∨ y in I and for all a in A we have ax in I. This notion of ideal coincides with the notion of ring ideal in the Boolean ring A. An ideal I of A is called prime if IA and if ab in I always implies a in I or b in I. Furthermore, for every aA we have that a-a = 0 ∈ I and then aI or -aI for every aA, if I is prime. An ideal I of A is called maximal if IA and if the only ideal properly containing I is A itself. For an ideal I, if aI and -aI, then I ∪ {a} or I ∪ {-a} is properly contained in another ideal J. Hence, that an I is not maximal and therefore the notions of prime ideal and maximal ideal are equivalent in Boolean algebras. Moreover, these notions coincide with ring theoretic ones of prime ideal and maximal ideal in the Boolean ring A.

The dual of an ideal is a filter. A filter of the Boolean algebra A is a subset p such that for all x, y in p we have xy in p and for all a in A we have ax in p. The dual of a maximal (or prime) ideal in a Boolean algebra is ultrafilter. The statement every filter in a Boolean algebra can be extended to an ultrafilter is called the Ultrafilter Theorem and can not be proved in ZF, if ZF is consistent. Within ZF, it is strictly weaker than the axiom of choice. The Ultrafilter Theorem has many equivalent formulations: every Boolean algebra has an ultrafilter, every ideal in a Boolean algebra can be extended to a prime ideal, etc.

Read more about this topic:  Boolean Algebra (structure)

Famous quotes containing the words ideals and, ideals and/or filters:

    It does not follow, because our difficulties are stupendous, because there are some souls timorous enough to doubt the validity and effectiveness of our ideals and our system, that we must turn to a state controlled or state directed social or economic system in order to cure our troubles.
    Herbert Hoover (1874–1964)

    Institutional psychiatry is a continuation of the Inquisition. All that has really changed is the vocabulary and the social style. The vocabulary conforms to the intellectual expectations of our age: it is a pseudo-medical jargon that parodies the concepts of science. The social style conforms to the political expectations of our age: it is a pseudo-liberal social movement that parodies the ideals of freedom and rationality.
    Thomas Szasz (b. 1920)

    Raise a million filters and the rain will not be clean, until the longing for it be refined in deep confession. And still we hear, If only this nation had a soul, or, Let us change the way we trade, or, Let us be proud of our region.
    Leonard Cohen (b. 1934)