Boolean Algebra - Laws

Laws

A law of Boolean algebra is an equation such as x∨(yz) = (xy)∨z between two Boolean terms, where a Boolean term is defined as an expression built up from variables and the constants 0 and 1 using the operations ∧, ∨, and ¬. The concept can be extended to terms involving other Boolean operations such as ⊕, →, and ≡, but such extensions are unnecessary for the purposes to which the laws are put. Such purposes include the definition of a Boolean algebra as any model of the Boolean laws, and as a means for deriving new laws from old as in the derivation of x∨(yz) = x∨(zy) from yz = zy as treated in the section on axiomatization.

Read more about this topic:  Boolean Algebra

Famous quotes containing the word laws:

    While I am in favor of the Government promptly enforcing the laws for the present, defending the forts and collecting the revenue, I am not in favor of a war policy with a view to the conquest of any of the slave States; except such as are needed to give us a good boundary. If Maryland attempts to go off, suppress her in order to save the Potomac and the District of Columbia. Cut a piece off of western Virginia and keep Missouri and all the Territories.
    Rutherford Birchard Hayes (1822–1893)

    What comes over a man, is it soul or mind
    That to no limits and bounds he can stay confined?
    You would say his ambition was to extend the reach
    Clear to the Arctic of every living kind.
    Why is his nature forever so hard to teach
    That though there is no fixed line between wrong and right,
    There are roughly zones whose laws must be obeyed?
    Robert Frost (1874–1963)

    Private property is held sacred in all good governments, and particularly in our own. Yet shall the fear of invading it prevent a general from marching his army over a cornfield or burning a house which protects the enemy? A thousand other instances might be cited to show that laws must sometimes be silent when necessity speaks.
    Andrew Jackson (1767–1845)