Definition
The Boltzmann distribution for the fractional number of particles Ni / N occupying a set of states i possessing energy Ei is:
where is the Boltzmann constant, T is temperature (assumed to be a well-defined quantity), is the degeneracy (meaning, the number of levels having energy ; sometimes, the more general 'states' are used instead of levels, to avoid using degeneracy in the equation), N is the total number of particles and Z(T) is the partition function.
Alternatively, for a single system at a well-defined temperature, it gives the probability that the system is in the specified state. The Boltzmann distribution applies only to particles at a high enough temperature and low enough density that quantum effects can be ignored, and the particles are obeying Maxwell–Boltzmann statistics. (See that article for a derivation of the Boltzmann distribution.)
The Boltzmann distribution is often expressed in terms of β = 1/kT where β is referred to as thermodynamic beta. The term or, which gives the (unnormalised) relative probability of a state, is called the Boltzmann factor and appears often in the study of physics and chemistry.
When the energy is simply the kinetic energy of the particle
then the distribution correctly gives the Maxwell–Boltzmann distribution of gas molecule speeds, previously predicted by Maxwell in 1859. The Boltzmann distribution is, however, much more general. For example, it also predicts the variation of the particle density in a gravitational field with height, if . In fact the distribution applies whenever quantum considerations can be ignored.
In some cases, a continuum approximation can be used. If there are g(E) dE states with energy E to E + dE, then the Boltzmann distribution predicts a probability distribution for the energy:
Then g(E) is called the density of states if the energy spectrum is continuous.
Classical particles with this energy distribution are said to obey Maxwell–Boltzmann statistics.
In the classical limit, i.e. at large values of or at small density of states — when wave functions of particles practically do not overlap — both the Bose–Einstein or Fermi–Dirac distribution become the Boltzmann distribution.
Read more about this topic: Boltzmann Distribution
Famous quotes containing the word definition:
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)