Boltzmann Distribution - Definition

Definition

The Boltzmann distribution for the fractional number of particles Ni / N occupying a set of states i possessing energy Ei is:

where is the Boltzmann constant, T is temperature (assumed to be a well-defined quantity), is the degeneracy (meaning, the number of levels having energy ; sometimes, the more general 'states' are used instead of levels, to avoid using degeneracy in the equation), N is the total number of particles and Z(T) is the partition function.

Alternatively, for a single system at a well-defined temperature, it gives the probability that the system is in the specified state. The Boltzmann distribution applies only to particles at a high enough temperature and low enough density that quantum effects can be ignored, and the particles are obeying Maxwell–Boltzmann statistics. (See that article for a derivation of the Boltzmann distribution.)

The Boltzmann distribution is often expressed in terms of β = 1/kT where β is referred to as thermodynamic beta. The term or, which gives the (unnormalised) relative probability of a state, is called the Boltzmann factor and appears often in the study of physics and chemistry.

When the energy is simply the kinetic energy of the particle

then the distribution correctly gives the Maxwell–Boltzmann distribution of gas molecule speeds, previously predicted by Maxwell in 1859. The Boltzmann distribution is, however, much more general. For example, it also predicts the variation of the particle density in a gravitational field with height, if . In fact the distribution applies whenever quantum considerations can be ignored.

In some cases, a continuum approximation can be used. If there are g(E) dE states with energy E to E + dE, then the Boltzmann distribution predicts a probability distribution for the energy:

Then g(E) is called the density of states if the energy spectrum is continuous.

Classical particles with this energy distribution are said to obey Maxwell–Boltzmann statistics.

In the classical limit, i.e. at large values of or at small density of states — when wave functions of particles practically do not overlap — both the Bose–Einstein or Fermi–Dirac distribution become the Boltzmann distribution.

Read more about this topic:  Boltzmann Distribution

Famous quotes containing the word definition:

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)