Blood Pressure - Relation To Wall Tension

Relation To Wall Tension

Regardless of site, blood pressure is related to the wall tension of the vessel according to the Young–Laplace equation (assuming that the thickness of the vessel wall is very small as compared to the diameter of the lumen):

where

  • P is the blood pressure
  • t is the wall thickness
  • r is the inside radius of the cylinder.
  • is the cylinder stress or "hoop stress".

For the thin-walled assumption to be valid the vessel must have a wall thickness of no more than about one-tenth (often cited as one twentieth) of its radius.

The cylinder stress, in turn, is the average force exerted circumferentially (perpendicular both to the axis and to the radius of the object) in the cylinder wall, and can be described as:

where:

  • F is the force exerted circumferentially on an area of the cylinder wall that has the following two lengths as sides:
  • t is the radial thickness of the cylinder
  • l is the axial length of the cylinder

Read more about this topic:  Blood Pressure

Famous quotes containing the words relation to, relation, wall and/or tension:

    Whoever has a keen eye for profits, is blind in relation to his craft.
    Sophocles (497–406/5 B.C.)

    When needs and means become abstract in quality, abstraction is also a character of the reciprocal relation of individuals to one another. This abstract character, universality, is the character of being recognized and is the moment which makes concrete, i.e. social, the isolated and abstract needs and their ways and means of satisfaction.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    The poisoned rat in the wall
    Cuts through the wall like a knife,
    Then blind, drying, and small
    And driven to cold water,
    Dies of the water of life....
    Allen Tate (1899–1979)

    Measured by any standard known to science—by horse-power, calories, volts, mass in any shape,—the tension and vibration and volume and so-called progression of society were full a thousand times greater in 1900 than in 1800;Mthe force had doubled ten times over, and the speed, when measured by electrical standards as in telegraphy, approached infinity, and had annihilated both space and time. No law of material movement applied to it.
    Henry Brooks Adams (1838–1918)