Block Code

Block Code

In coding theory, block codes refers to the large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The main reason why the concept of block codes is so useful is that it allows coding theorists, mathematicians, and computer scientists to study the limitations of all block codes in a unified way. Such limitations often take the form of bounds that relate different parameters of the block code to each other, such as its rate and its ability to detect and correct errors.

Examples of block codes are Reed–Solomon codes, Hamming codes, Hadamard codes, Expander codes, Golay codes, and Reed–Muller codes. These examples also belong to the class of linear codes, and hence they are called linear block codes.

Read more about Block Code:  The Block Code and Its Parameters, Examples, Error Detection and Correction Properties, Sphere Packings and Lattices

Famous quotes containing the words block and/or code:

    It is, in both cases, that a spiritual life has been imparted to nature; that the solid seeming block of matter has been pervaded and dissolved by a thought; that this feeble human being has penetrated the vast masses of nature with an informing soul, and recognised itself in their harmony, that is, seized their law. In physics, when this is attained, the memory disburthens itself of its cumbrous catalogues of particulars, and carries centuries of observation in a single formula.
    Ralph Waldo Emerson (1803–1882)

    Wise Draco comes, deep in the midnight roll
    Of black artillery; he comes, though late;
    In code corroborating Calvin’s creed
    And cynic tyrannies of honest kings;
    He comes, nor parlies; and the Town, redeemed,
    Gives thanks devout; nor, being thankful, heeds
    The grimy slur on the Republic’s faith implied,
    Which holds that Man is naturally good,
    And—more—is Nature’s Roman, never to be
    scourged.
    Herman Melville (1819–1891)