Blade Element Theory

Blade element theory (BET) is a mathematical process originally designed by William Froude (1878), David W. Taylor (1893) and Stefan Drzewiecki to determine the behavior of propellers. It involves breaking a blade down into several small parts then determining the forces on each of these small blade elements. These forces are then integrated along the entire blade and over one rotor revolution in order to obtain the forces and moments produced by the entire propeller or rotor. One of the key difficulties lies in modelling the induced velocity on the rotor disk. Because of this the blade element theory is often combined with the momentum theory to provide additional relationships necessary to describe the induced velocity on the rotor disk. At the most basic level of approximation a uniform induced velocity on the disk is assumed:

Alternatively the variation of the induced velocity along the radius can modeled by breaking the blade down into small annuli and applying the conservation of mass, momentum and energy to every annulus. This approach is sometimes called the Froude-Finsterwalder equation.

If the blade element method is applied to helicopter rotors in forward flight it is necessary to consider the flapping motion of the blades as well as the longitudinal and lateral distribution of the induced velocity on the rotor disk. The most simple forward flight inflow models are first harmonic models.

Famous quotes containing the words blade, element and/or theory:

    When he painted a road, the roadmakers were there in his imagination. When he painted the turned earth of a ploughed field, the gesture of the blade turning the earth was included in his own act. Wherever he looked he saw the labour of existence; and this labour, recognized as such, was what constituted reality for him.
    John Berger (b. 1926)

    Only the rare expands our minds, only as we shudder in the face of a new force do our feelings increase. Therefore the extraordinary is always the measure of all greatness. And the creative element always remains the value superior to all others and the mind superior to our minds.
    Stefan Zweig (18811942)

    It makes no sense to say what the objects of a theory are,
    beyond saying how to interpret or reinterpret that theory in another.
    Willard Van Orman Quine (b. 1908)