Black Hole Entropy
The only way to satisfy the second law of thermodynamics is to admit that black holes have entropy. If black holes carried no entropy, it would be possible to violate the second law by throwing mass into the black hole. The increase of the entropy of the black hole more than compensates for the decrease of the entropy carried by the object that was swallowed.
Starting from theorems proved by Stephen Hawking, Jacob Bekenstein conjectured that the black hole entropy was proportional to the area of its event horizon divided by the Planck area. Bekenstein suggested (½ ln 2)/4π as the constant of proportionality, asserting that if the constant was not exactly this, it must be very close to it. The next year, Hawking showed that black holes emit thermal Hawking radiation corresponding to a certain temperature (Hawking temperature). Using the thermodynamic relationship between energy, temperature and entropy, Hawking was able to confirm Bekenstein's conjecture and fix the constant of proportionality at 1/4:
where A is the area of the event horizon, calculated at 4πR2, k is Boltzmann's constant, and is the Planck length. The subscript BH either stands for "black hole" or "Bekenstein-Hawking". The black hole entropy is proportional to the area of its event horizon . The fact that the black hole entropy is also the maximal entropy that can be obtained by the Bekenstein bound (wherein the Bekenstein bound becomes an equality) was the main observation that led to the holographic principle.
Although Hawking's calculations gave further thermodynamic evidence for black hole entropy, until 1995 no one was able to make a controlled calculation of black hole entropy based on statistical mechanics, which associates entropy with a large number of microstates. In fact, so called "no hair" theorems appeared to suggest that black holes could have only a single microstate. The situation changed in 1995 when Andrew Strominger and Cumrun Vafa calculated the right Bekenstein-Hawking entropy of a supersymmetric black hole in string theory, using methods based on D-branes. Their calculation was followed by many similar computations of entropy of large classes of other extremal and near-extremal black holes, and the result always agreed with the Bekenstein-Hawking formula.
In Loop quantum gravity (LQG) it is possible to associate a geometrical interpretation to the microstates: these are the quantum geometries of the horizon. LQG offers a geometric explanation of the finiteness of the entropy and of the proportionality of the area of the horizon. It is possible to derive, from the covariant formulation of full quantum theory (Spinfoam) the correct relation between energy and area (1st law), the Unruh temperature and the distribution that yields Hawking entropy. The calculation makes use of the notion of dynamical horizon and is done for non-extremal black holes.
Read more about this topic: Black Hole Thermodynamics
Famous quotes containing the words black, hole and/or entropy:
“My husband sings Baa Baa black sheep and we pretend
that alls certain and good, that the marriage wont end.”
—Anne Sexton (19281974)
“Give a beggar a dime and hell bless you. Give him a dollar and hell curse you for witholding the rest of your fortune. Poverty is a bag with a hole at the bottom.”
—Anzia Yezierska (c. 18811970)
“Just as the constant increase of entropy is the basic law of the universe, so it is the basic law of life to be ever more highly structured and to struggle against entropy.”
—Václav Havel (b. 1936)