Understanding The Problem
The birthday problem asks whether any of the people in a given group has a birthday matching any of the others — not one in particular. (See "Same birthday as you" below for an analysis of this much less surprising alternative problem.)
In the example given earlier, a list of 23 people, comparing the birthday of the first person on the list to the others allows 22 chances for a matching birthday, the second person on the list to the others allows 21 chances for a matching birthday, third person has 20 chances, and so on. Hence total chances are: 22+21+20+....+1 = 253, so comparing every person to all of the others allows 253 distinct chances (combinations): in a group of 23 people there are pairs.
Presuming all birthdays are equally probable, the probability of a given birthday for a person chosen from the entire population at random is 1/365 (ignoring Leap Day, February 29). Although the pairings in a group of 23 people are not statistically equivalent to 253 pairs chosen independently, the birthday paradox becomes less surprising if a group is thought of in terms of the number of possible pairs, rather than as the number of individuals.
Read more about this topic: Birthday Problem
Famous quotes containing the word problem:
“[How] the young . . . can grow from the primitive to the civilized, from emotional anarchy to the disciplined freedom of maturity without losing the joy of spontaneity and the peace of self-honesty is a problem of education that no school and no culture have ever solved.”
—Leontine Young (20th century)