Birthday Problem - Partition Problem

Partition Problem

A related problem is the partition problem, a variant of the knapsack problem from operations research. Some weights are put on a balance scale; each weight is an integer number of grams randomly chosen between one gram and one million grams (one metric ton). The question is whether one can usually (that is, with probability close to 1) transfer the weights between the left and right arms to balance the scale. (In case the sum of all the weights is an odd number of grams, a discrepancy of one gram is allowed.) If there are only two or three weights, the answer is very clearly no; although there are some combinations which work, the majority of randomly selected combinations of three weights do not. If there are very many weights, the answer is clearly yes. The question is, how many are just sufficient? That is, what is the number of weights such that it is equally likely for it to be possible to balance them as it is to be impossible?

Some people's intuition is that the answer is above 100,000. Most people's intuition is that it is in the thousands or tens of thousands, while others feel it should at least be in the hundreds. The correct answer is approximately 23.

The reason is that the correct comparison is to the number of partitions of the weights into left and right. There are 2N−1 different partitions for N weights, and the left sum minus the right sum can be thought of as a new random quantity for each partition. The distribution of the sum of weights is approximately Gaussian, with a peak at 1,000,000 N and width, so that when 2N−1 is approximately equal to the transition occurs. 223−1 is about 4 million, while the width of the distribution is only 5 million.

Read more about this topic:  Birthday Problem

Famous quotes containing the word problem:

    I used to be a discipline problem, which caused me embarrassment until I realized that being a discipline problem in a racist society is sometimes an honor.
    Ishmael Reed (b. 1938)