Characterization By Generating Functions
Polynomial sequences of binomial type are precisely those whose generating functions are formal (not necessarily convergent) power series of the form
where f(t) is a formal power series whose constant term is zero and whose first-degree term is not zero. It can be shown by the use of the power-series version of Faà di Bruno's formula that
The delta operator of the sequence is f−1(D), so that
Read more about this topic: Binomial Type
Famous quotes containing the word functions:
“Nobody is so constituted as to be able to live everywhere and anywhere; and he who has great duties to perform, which lay claim to all his strength, has, in this respect, a very limited choice. The influence of climate upon the bodily functions ... extends so far, that a blunder in the choice of locality and climate is able not only to alienate a man from his actual duty, but also to withhold it from him altogether, so that he never even comes face to face with it.”
—Friedrich Nietzsche (18441900)