Definition and Interpretations
For natural numbers (taken to include 0) n and k, the binomial coefficient can be defined as the coefficient of the monomial Xk in the expansion of (1 + X)n. The same coefficient also occurs (if k ≤ n) in the binomial formula
(valid for any elements x,y of a commutative ring), which explains the name "binomial coefficient".
Another occurrence of this number is in combinatorics, where it gives the number of ways, disregarding order, that k objects can be chosen from among n objects; more formally, the number of k-element subsets (or k-combinations) of an n-element set. This number can be seen as equal to the one of the first definition, independently of any of the formulas below to compute it: if in each of the n factors of the power (1 + X)n one temporarily labels the term X with an index i (running from 1 to n), then each subset of k indices gives after expansion a contribution Xk, and the coefficient of that monomial in the result will be the number of such subsets. This shows in particular that is a natural number for any natural numbers n and k. There are many other combinatorial interpretations of binomial coefficients (counting problems for which the answer is given by a binomial coefficient expression), for instance the number of words formed of n bits (digits 0 or 1) whose sum is k is given by, while the number of ways to write where every ai is a nonnegative integer is given by . Most of these interpretations are easily seen to be equivalent to counting k-combinations.
Read more about this topic: Binomial Coefficient
Famous quotes containing the word definition:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)