Definition and Interpretations
For natural numbers (taken to include 0) n and k, the binomial coefficient can be defined as the coefficient of the monomial Xk in the expansion of (1 + X)n. The same coefficient also occurs (if k ≤ n) in the binomial formula
(valid for any elements x,y of a commutative ring), which explains the name "binomial coefficient".
Another occurrence of this number is in combinatorics, where it gives the number of ways, disregarding order, that k objects can be chosen from among n objects; more formally, the number of k-element subsets (or k-combinations) of an n-element set. This number can be seen as equal to the one of the first definition, independently of any of the formulas below to compute it: if in each of the n factors of the power (1 + X)n one temporarily labels the term X with an index i (running from 1 to n), then each subset of k indices gives after expansion a contribution Xk, and the coefficient of that monomial in the result will be the number of such subsets. This shows in particular that is a natural number for any natural numbers n and k. There are many other combinatorial interpretations of binomial coefficients (counting problems for which the answer is given by a binomial coefficient expression), for instance the number of words formed of n bits (digits 0 or 1) whose sum is k is given by, while the number of ways to write where every ai is a nonnegative integer is given by . Most of these interpretations are easily seen to be equivalent to counting k-combinations.
Read more about this topic: Binomial Coefficient
Famous quotes containing the word definition:
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)