The Number of Binary Relations
The number of distinct binary relations on an n-element set is 2n2 (sequence A002416 in OEIS):
Number of n-element binary relations of different types | ||||||||
---|---|---|---|---|---|---|---|---|
n | all | transitive | reflexive | preorder | partial order | total preorder | total order | equivalence relation |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 16 | 13 | 4 | 4 | 3 | 3 | 2 | 2 |
3 | 512 | 171 | 64 | 29 | 19 | 13 | 6 | 5 |
4 | 65536 | 3994 | 4096 | 355 | 219 | 75 | 24 | 15 |
OEIS | A002416 | A006905 | A053763 | A000798 | A001035 | A000670 | A000142 | A000110 |
Notes:
- The number of irreflexive relations is the same as that of reflexive relations.
- The number of strict partial orders (irreflexive transitive relations) is the same as that of partial orders.
- The number of strict weak orders is the same as that of total preorders.
- The total orders are the partial orders that are also total preorders. The number of preorders that are neither a partial order nor a total preorder is, therefore, the number of preorders, minus the number of partial orders, minus the number of total preorders, plus the number of total orders: 0, 0, 0, 3, and 85, respectively.
- the number of equivalence relations is the number of partitions, which is the Bell number.
The binary relations can be grouped into pairs (relation, complement), except that for n = 0 the relation is its own complement. The non-symmetric ones can be grouped into quadruples (relation, complement, inverse, inverse complement).
Read more about this topic: Binary Relation
Famous quotes containing the words number and/or relations:
“Not too many years ago, a childs experience was limited by how far he or she could ride a bicycle or by the physical boundaries that parents set. Today ... the real boundaries of a childs life are set more by the number of available cable channels and videotapes, by the simulated reality of videogames, by the number of megabytes of memory in the home computer. Now kids can go anywhere, as long as they stay inside the electronic bubble.”
—Richard Louv (20th century)
“Subject the material world to the higher ends by understanding it in all its relations to daily life and action.”
—Ellen Henrietta Swallow Richards (18421911)