Operations On Binary Relations
If R is a binary relation over X and Y, then the following is a binary relation over Y and X:
- Inverse or converse: R −1, defined as R −1 = { (y, x) | (x, y) ∈ R }. A binary relation over a set is equal to its inverse if and only if it is symmetric. See also duality (order theory).
If R is a binary relation over X, then each of the following is a binary relation over X:
- Reflexive closure: R =, defined as R = = { (x, x) | x ∈ X } ∪ R or the smallest reflexive relation over X containing R. This can be seen to be equal to the intersection of all reflexive relations containing R.
- Reflexive reduction: R ≠, defined as R ≠ = R \ { (x, x) | x ∈ X } or the largest irreflexive relation over X contained in R.
- Transitive closure: R +, defined as the smallest transitive relation over X containing R. This can be seen to be equal to the intersection of all transitive relations containing R.
- Transitive reduction: R −, defined as a minimal relation having the same transitive closure as R.
- Reflexive transitive closure: R *, defined as R * = (R +) =, the smallest preorder containing R.
- Reflexive transitive symmetric closure: R ≡, defined as the smallest equivalence relation over X containing R.
If R, S are binary relations over X and Y, then each of the following is a binary relation:
- Union: R ∪ S ⊆ X × Y, defined as R ∪ S = { (x, y) | (x, y) ∈ R or (x, y) ∈ S }.
- Intersection: R ∩ S ⊆ X × Y, defined as R ∩ S = { (x, y) | (x, y) ∈ R and (x, y) ∈ S }.
If R is a binary relation over X and Y, and S is a binary relation over Y and Z, then the following is a binary relation over X and Z: (see main article composition of relations)
- Composition: S ∘ R, also denoted R ; S (or more ambiguously R ∘ S), defined as S ∘ R = { (x, z) | there exists y ∈ Y, such that (x, y) ∈ R and (y, z) ∈ S }. The order of R and S in the notation S ∘ R, used here agrees with the standard notational order for composition of functions.
Read more about this topic: Binary Relation
Famous quotes containing the words operations and/or relations:
“It may seem strange that any road through such a wilderness should be passable, even in winter, when the snow is three or four feet deep, but at that season, wherever lumbering operations are actively carried on, teams are continually passing on the single track, and it becomes as smooth almost as a railway.”
—Henry David Thoreau (18171862)
“As death, when we come to consider it closely, is the true goal of our existence, I have formed during the last few years such close relations with this best and truest friend of mankind, that his image is not only no longer terrifying to me, but is indeed very soothing and consoling! And I thank my God for graciously granting me the opportunity ... of learning that death is the key which unlocks the door to our true happiness.”
—Wolfgang Amadeus Mozart (17561791)