External Binary Operations
An external binary operation is a binary function from K × S to S. This differs from a binary operation in the strict sense in that K need not be S; its elements come from outside.
An example of an external binary operation is scalar multiplication in linear algebra. Here K is a field and S is a vector space over that field.
An external binary operation may alternatively be viewed as an action; K is acting on S.
Note that the dot product of two vectors is not a binary operation, external or otherwise, as it maps from S× S to K, where K is a field and S is a vector space over K.
Read more about this topic: Binary Operation
Famous quotes containing the words external and/or operations:
“A State, in idea, is the opposite of a Church. A State regards classes, and not individuals; and it estimates classes, not by internal merit, but external accidents, as property, birth, etc. But a church does the reverse of this, and disregards all external accidents, and looks at men as individual persons, allowing no gradations of ranks, but such as greater or less wisdom, learning, and holiness ought to confer. A Church is, therefore, in idea, the only pure democracy.”
—Samuel Taylor Coleridge (17721834)
“There is a patent office at the seat of government of the universe, whose managers are as much interested in the dispersion of seeds as anybody at Washington can be, and their operations are infinitely more extensive and regular.”
—Henry David Thoreau (18171862)