Definition
Let V, W and X be three vector spaces over the same base field F. A bilinear map is a function
- B : V × W → X
such that for any w in W the map
- v ↦ B(v, w)
is a linear map from V to X, and for any v in V the map
- w ↦ B(v, w)
is a linear map from W to X.
In other words, if we hold the first entry of the bilinear map fixed, while letting the second entry vary, the result is a linear operator, and similarly if we hold the second entry fixed. Note that if we regard the product V × W as a vector space, then B is not a linear transformation of vector spaces (unless V = 0 or W = 0) because, for example B(2(v,w)) = B(2v,2w) = 2B(v,2w) = 4B(v,w).
If V = W and we have B(v,w) = B(w,v) for all v, w in V, then we say that B is symmetric.
The case where X is F, and we have a bilinear form, is particularly useful (see for example scalar product, inner product and quadratic form).
The definition works without any changes if instead of vector spaces over a field F, we use modules over a commutative ring R. It also can be easily generalized to n-ary functions, where the proper term is multilinear.
For the case of a non-commutative base ring R and a right module MR and a left module RN, we can define a bilinear map B : M × N → T, where T is an abelian group, such that for any n in N, m ↦ B(m, n) is a group homomorphism, and for any m in M, n ↦ B(m, n) is a group homomorphism too, and which also satisfies
- B(mt, n) = B(m, tn)
for all m in M, n in N and t in R.
Read more about this topic: Bilinear Map
Famous quotes containing the word definition:
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)