Betti Number - Definition

Definition

For a non-negative integer k, the kth Betti number bk(X) of the space X is defined as the rank of the abelian group Hk(X), the kth homology group of X. Equivalently, one can define it as the vector space dimension of Hk(X; Q), since the homology group in this case is a vector space over Q. The universal coefficient theorem, in a very simple case, shows that these definitions are the same.

More generally, given a field F one can define bk(X, F), the kth Betti number with coefficients in F, as the vector space dimension of Hk(X, F).

Read more about this topic:  Betti Number

Famous quotes containing the word definition:

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)