Berry Paradox - Relationship With Kolmogorov Complexity

Relationship With Kolmogorov Complexity

It is not possible in general to unambiguously define what is the minimal number of symbols required to describe a given string (given a specific description mechanism). In this context, the terms string and number may be used interchangeably, since a number is actually a string of symbols, i.e. an English word (like the word "eleven" used in the paradox) while, on the other hand, it is possible to refer to any word with a number, e.g. by the number of its position in a given dictionary, or by suitable encoding. Some long strings can be described exactly using fewer symbols than those required by their full representation, as is often experienced using data compression. The complexity of a given string is then defined as the minimal length that a description requires in order to (unambiguously) refer to the full representation of that string.

The Kolmogorov complexity is defined using formal languages, or Turing machines which avoids ambiguities about which string results from a given description. It can be proven that the Kolmogorov complexity is not computable. The proof by contradiction shows that if it were possible to compute the Kolmogorov complexity, then it would also be possible to systematically generate paradoxes similar to this one, i.e. descriptions shorter than what the complexity of the described string implies. That is to say, the definition of the Berry number is paradoxical because it is not actually possible to compute how many words are required to define a number, and we know that such computation is not feasible because of the paradox.

Read more about this topic:  Berry Paradox

Famous quotes containing the words relationship and/or complexity:

    I began to expand my personal service in the church, and to search more diligently for a closer relationship with God among my different business, professional and political interests.
    Jimmy Carter (James Earl Carter, Jr.)

    It is not only their own need to mother that takes some women by surprise; there is also the shock of discovering the complexity of alternative child-care arrangements that have been made to sound so simple. Those for whom the intended solution is equal parenting have found that some parents are more equal than others.
    Elaine Heffner (20th century)