Bernoulli's Principle - Real-world Application

Real-world Application

In modern everyday life there are many observations that can be successfully explained by application of Bernoulli's principle, even though no real fluid is entirely inviscid and a small viscosity often has a large effect on the flow.

  • Bernoulli's principle can be used to calculate the lift force on an airfoil if the behaviour of the fluid flow in the vicinity of the foil is known. For example, if the air flowing past the top surface of an aircraft wing is moving faster than the air flowing past the bottom surface, then Bernoulli's principle implies that the pressure on the surfaces of the wing will be lower above than below. This pressure difference results in an upwards lifting force. Whenever the distribution of speed past the top and bottom surfaces of a wing is known, the lift forces can be calculated (to a good approximation) using Bernoulli's equations – established by Bernoulli over a century before the first man-made wings were used for the purpose of flight. Bernoulli's principle does not explain why the air flows faster past the top of the wing and slower past the underside. To understand why, it is helpful to understand circulation, the Kutta condition, and the Kutta–Joukowski theorem.
  • The Dyson Bladeless Fan (or Air Multiplier) is an implementation that takes advantage of the Venturi effect, Coandă effect and Bernoulli's Principle.
  • The carburetor used in many reciprocating engines contains a venturi to create a region of low pressure to draw fuel into the carburetor and mix it thoroughly with the incoming air. The low pressure in the throat of a venturi can be explained by Bernoulli's principle; in the narrow throat, the air is moving at its fastest speed and therefore it is at its lowest pressure.
  • The Pitot tube and static port on an aircraft are used to determine the airspeed of the aircraft. These two devices are connected to the airspeed indicator which determines the dynamic pressure of the airflow past the aircraft. Dynamic pressure is the difference between stagnation pressure and static pressure. Bernoulli's principle is used to calibrate the airspeed indicator so that it displays the indicated airspeed appropriate to the dynamic pressure.
  • The flow speed of a fluid can be measured using a device such as a Venturi meter or an orifice plate, which can be placed into a pipeline to reduce the diameter of the flow. For a horizontal device, the continuity equation shows that for an incompressible fluid, the reduction in diameter will cause an increase in the fluid flow speed. Subsequently Bernoulli's principle then shows that there must be a decrease in the pressure in the reduced diameter region. This phenomenon is known as the Venturi effect.
  • The maximum possible drain rate for a tank with a hole or tap at the base can be calculated directly from Bernoulli's equation, and is found to be proportional to the square root of the height of the fluid in the tank. This is Torricelli's law, showing that Torricelli's law is compatible with Bernoulli's principle. Viscosity lowers this drain rate. This is reflected in the discharge coefficient, which is a function of the Reynolds number and the shape of the orifice.
  • In open-channel hydraulics, a detailed analysis of the Bernoulli theorem and its extension were recently (2009) developed. It was proved that the depth-averaged specific energy reaches a minimum in converging accelerating free-surface flow over weirs and flumes (also). Further, in general, a channel control with minimum specific energy in curvilinear flow is not isolated from water waves, as customary state in open-channel hydraulics.
  • The Bernoulli grip relies on this principle to create a non-contact adhesive force between a surface and the gripper.

Read more about this topic:  Bernoulli's Principle

Famous quotes containing the word application:

    The main object of a revolution is the liberation of man ... not the interpretation and application of some transcendental ideology.
    Jean Genet (1910–1986)