Sum of Powers
Bernoulli numbers feature prominently in the closed form expression of the sum of the m-th powers of the first n positive integers. For m, n ≥ 0 define
This expression can always be rewritten as a polynomial in n of degree m + 1. The coefficients of these polynomials are related to the Bernoulli numbers by Bernoulli's formula:
where the convention B1 = +1/2 is used. ( denotes the binomial coefficient, m+1 choose k.)
For example, taking m to be 1 gives the triangular numbers 0, 1, 3, 6, ... (sequence A000217 in OEIS).
Taking m to be 2 gives the square pyramidal numbers 0, 1, 5, 14, ... (sequence A000330 in OEIS).
Some authors use the convention B1 = −1/2 and state Bernoulli's formula in this way:
- .
Bernoulli's formula is sometimes called Faulhaber's formula after Johann Faulhaber who also found remarkable ways to calculate sum of powers.
Faulhaber's formula was generalized by V. Guo and J. Zeng to a q-analog (Guo & Zeng 2005).
Read more about this topic: Bernoulli Number
Famous quotes containing the words sum of, sum and/or powers:
“And what is the potential man, after all? Is he not the sum of all that is human? Divine, in other words?”
—Henry Miller (18911980)
“No, the five hundred was the sum they named
To pay the doctors bill and tide me over.
Its that or fight, and I dont want to fight
I just want to get settled in my life....”
—Robert Frost (18741963)
“A multitude of causes unknown to former times are now acting with a combined force to blunt the discriminating powers of the mind, and unfitting it for all voluntary exertion to reduce it to a state of almost savage torpor.”
—William Wordsworth (17701850)