Integral Representation and Continuation
The integral
has as special values b(2n) = B2n for n > 0. The integral might be considered as a continuation of the Bernoulli numbers to the complex plane and this was indeed suggested by Peter Luschny in 2004.
For example b(3) = (3/2)ζ(3)Π−3Ι and b(5) = −(15/2) ζ(5) Π −5Ι. Here ζ(n) denotes the Riemann zeta function and Ι the imaginary unit. It is remarkable that already Leonhard Euler (Opera Omnia, Ser. 1, Vol. 10, p. 351) considered these numbers and calculated
Euler's values are unsigned and real, but obviously his aim was to find a meaningful way to define the Bernoulli numbers at the odd integers n > 1.
Read more about this topic: Bernoulli Number
Famous quotes containing the words integral and/or continuation:
“Make the most of your regrets; never smother your sorrow, but tend and cherish it till it come to have a separate and integral interest. To regret deeply is to live afresh.”
—Henry David Thoreau (18171862)
“I believe it was a good job,
Despite this possible horror: that they might prefer the
Preservation of their law in all its sick dignity and their knives
To the continuation of their creed
And their lives.”
—Gwendolyn Brooks (b. 1917)