Benzalkonium Chloride - Biological Activity

Biological Activity

The greatest biocidal activity is associated with the C12-C14 alkyl derivatives. The mechanism of bactericidal/microbicidal action is thought to be due to disruption of intermolecular interactions. This can cause dissociation of cellular membrane lipid bilayers, which compromises cellular permeability controls and induces leakage of cellular contents. Other biomolecular complexes within the bacterial cell can also undergo dissociation. Enzymes, which finely control a wide range of respiratory and metabolic cellular activities, are particularly susceptible to deactivation. Critical intermolecular interactions and tertiary structures in such highly specific biochemical systems can be readily disrupted by cationic surfactants.

Benzalkonium chloride solutions are fast-acting biocidal agents with a moderately long duration of action. They are active against bacteria and some viruses, fungi, and protozoa. Bacterial spores are considered to be resistant. Solutions are bacteriostatic or bactericidal according to their concentration. Gram-positive bacteria are generally more susceptible than Gram-negative. Activity is not greatly affected by pH, but increases substantially at higher temperatures and prolonged exposure times. In a 1998 study utilizing the FDA protocol, a non-alcohol sanitizer utilizing the active ingredient benzalkonium chloride met the FDA performance standards, while Purell, a popular alcohol-based sanitizer, did not. The study found that a benzalkonium chloride-based sanitizer was the most favorable non-alcohol-based hand sanitizer. Advancements in the quality and efficacy of benzalkonium chloride in current non-alcohol hand sanitizers has addressed the CDC concerns regarding gram negative bacteria, with the leading products being equal if not more effective against gram negative, particularly NDM1 and other antibiotic resistant bacteria.

Newer formulations using benzalkonium blended with various quaternary ammonium derivatives can be used to extend the biocidal spectrum and enhance the efficacy of benzalkonium based disinfection products. This technique has been used to improve virucidal activity of quaternary ammonium-based formulations to healthcare infection hazards such as hepatitis, HIV, etc. Quaternary ammonium formulations are now the disinfectants of choice for hospitals. This is on account of user and patient safety even on contact with treated surfaces and the absence of harmful fumes. Benzalkonium solutions for hospital use tend to be neutral to alkaline, non-corrosive on metal surfaces, non-staining, and safe to use on all washable surfaces.

The use of appropriate supporting excipients can also greatly improve efficacy and detergency, and prevent deactivation under use conditions. Formulation requires great care, as benzalkonium solutions can readily be inactivated in the presence of organic and inorganic contamination. Solutions are incompatible with soaps, and must not be mixed with anionic surfactants. Hard water salts can also reduce biocidal activity. As with any disinfectant, it is recommended that surfaces are free from visible dirt and interfering materials for maximal disinfection performance by quaternary ammonium products.

Although hazardous levels are not likely to be reached under normal use conditions, benzalkonium and other detergents can pose a hazard to marine organisms. Quaternary ammonium disinfectants are effective at very low ppm levels, so excess use should be avoided.

Read more about this topic:  Benzalkonium Chloride

Famous quotes containing the words biological and/or activity:

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    The teacher must derive not only the capacity, but the desire, to observe natural phenomena. In our system, she must become a passive, much more than an active, influence, and her passivity shall be composed of anxious scientific curiosity and of absolute respect for the phenomenon which she wishes to observe. The teacher must understand and feel her position of observer: the activity must lie in the phenomenon.
    Maria Montessori (1870–1952)