Benoit Mandelbrot - Fractals and Regular Roughness

Fractals and Regular Roughness

Although Mandelbrot coined the term fractal, some of the mathematical objects he presented in The Fractal Geometry of Nature had been previously described by other mathematicians. Before Mandelbrot, they had often been regarded as isolated curiosities with unnatural and non-intuitive properties. Mandelbrot brought these objects together for the first time and turned them into essential tools for the long-stalled effort to extend the scope of science to non-smooth objects in the real world. He highlighted their common properties, such as self-similarity (linear, non-linear, or statistical), scale invariance, and a (usually) non-integer Hausdorff dimension.

He also emphasized the use of fractals as realistic and useful models of many "rough" phenomena in the real world. Natural fractals include the shapes of mountains, coastlines and river basins; the structures of plants, blood vessels and lungs; the clustering of galaxies; and Brownian motion. Fractals are found in human pursuits, such as music, painting, architecture, and stock market prices. Mandelbrot believed that fractals, far from being unnatural, were in many ways more intuitive and natural than the artificially smooth objects of traditional Euclidean geometry:

Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line.
—Mandelbrot, in his introduction to The Fractal Geometry of Nature

Mandelbrot has been called a visionary and a maverick. His informal and passionate style of writing and his emphasis on visual and geometric intuition (supported by the inclusion of numerous illustrations) made The Fractal Geometry of Nature accessible to non-specialists. The book sparked widespread popular interest in fractals and contributed to chaos theory and other fields of science and mathematics.

When visiting the Museu de la Ciència de Barcelona in 1988, he told its director that the painting The Face of War had given him "the intuition about the transcendence of the fractal geometry when making intelligible the omnipresent similitude in the forms of nature". He also said that, fractally, Gaudí was superior to Van der Rohe.

Read more about this topic:  Benoit Mandelbrot

Famous quotes containing the word regular:

    It was inspiriting to hear the regular dip of the paddles, as if they were our fins or flippers, and to realize that we were at length fairly embarked. We who had felt strangely as stage-passengers and tavern-lodgers were suddenly naturalized there and presented with the freedom of the lakes and woods.
    Henry David Thoreau (1817–1862)