Distributions That Exactly Satisfy Benford's Law
Some well-known infinite integer sequences provably satisfy Benford's law exactly (in the asymptotic limit as more and more terms of the sequence are included). Among these are the Fibonacci numbers, the factorials, the powers of 2, and the powers of almost any other number.
Likewise, some continuous processes satisfy Benford's law exactly (in the asymptotic limit as the process continues longer and longer). One is an exponential growth or decay process: If a quantity is exponentially increasing or decreasing in time, then the percentage of time that it has each first digit satisfies Benford's law asymptotically (i.e., more and more accurately as the process continues for more and more time).
Read more about this topic: Benford's Law
Famous quotes containing the words satisfy and/or law:
“Here was a little of everything in a small compass to satisfy the wants and the ambition of the woods,... but there seemed to me, as usual, a preponderance of childrens toys,dogs to bark, and cats to mew, and trumpets to blow, where natives there hardly are yet. As if a child born into the Maine woods, among the pine cones and cedar berries, could not do without such a sugar-man or skipping-jack as the young Rothschild has.”
—Henry David Thoreau (18171862)
“The law is a sort of hocus-pocus science, that smiles in yer face while it picks yer pocket: and the glorious uncertainty of it is of more use to the professors than the justice of it.”
—Charles Macklin (16901797)