Benford's Law - Distributions That Exactly Satisfy Benford's Law

Distributions That Exactly Satisfy Benford's Law

Some well-known infinite integer sequences provably satisfy Benford's law exactly (in the asymptotic limit as more and more terms of the sequence are included). Among these are the Fibonacci numbers, the factorials, the powers of 2, and the powers of almost any other number.

Likewise, some continuous processes satisfy Benford's law exactly (in the asymptotic limit as the process continues longer and longer). One is an exponential growth or decay process: If a quantity is exponentially increasing or decreasing in time, then the percentage of time that it has each first digit satisfies Benford's law asymptotically (i.e., more and more accurately as the process continues for more and more time).

Read more about this topic:  Benford's Law

Famous quotes containing the words satisfy and/or law:

    A friend whose hopes we cannot satisfy is a friend we would rather have as an enemy.
    Friedrich Nietzsche (1844–1900)

    War is thus divine in itself, since it is a law of the world. War is divine through its consequences of a supernatural nature which are as much general as particular.... War is divine in the mysterious glory that surrounds it and in the no less inexplicable attraction that draws us to it.... War is divine by the manner in which it breaks out.
    Joseph De Maistre (1753–1821)