Bell Inequalities Are Violated By Quantum Mechanical Predictions
In the usual quantum mechanical formalism, the observables X and Y are represented as self-adjoint operators on a Hilbert space. To compute the correlation, assume that X and Y are represented by matrices in a finite dimensional space and that X and Y commute; this special case suffices for our purposes below. The von Neumann measurement postulate states: a series of measurements of an observable X on a series of identical systems in state produces a distribution of real values. By the assumption that observables are finite matrices, this distribution is discrete. The probability of observing λ is non-zero if and only if λ is an eigenvalue of the matrix X and moreover the probability is
where EX (λ) is the projector corresponding to the eigenvalue λ. The system state immediately after the measurement is
From this, we can show that the correlation of commuting observables X and Y in a pure state is
We apply this fact in the context of the EPR paradox. The measurements performed by Alice and Bob are spin measurements on electrons. Alice can choose between two detector settings labelled a and a′; these settings correspond to measurement of spin along the z or the x axis. Bob can choose between two detector settings labelled b and b′; these correspond to measurement of spin along the z′ or x′ axis, where the x′ – z′ coordinate system is rotated 135° relative to the x – z coordinate system. The spin observables are represented by the 2 × 2 self-adjoint matrices:
These are the Pauli spin matrices normalized so that the corresponding eigenvalues are +1, −1. As is customary, we denote the eigenvectors of Sx by
Let be the spin singlet state for a pair of electrons discussed in the EPR paradox. This is a specially constructed state described by the following vector in the tensor product
Now let us apply the CHSH formalism to the measurements that can be performed by Alice and Bob.
The operators, correspond to Bob's spin measurements along x′ and z′. Note that the A operators commute with the B operators, so we can apply our calculation for the correlation. In this case, we can show that the CHSH inequality fails. In fact, a straightforward calculation shows that
and
so that
Bell's Theorem: If the quantum mechanical formalism is correct, then the system consisting of a pair of entangled electrons cannot satisfy the principle of local realism. Note that is indeed the upper bound for quantum mechanics called Tsirelson's bound. The operators giving this maximal value are always isomorphic to the Pauli matrices.
Read more about this topic: Bell's Theorem
Famous quotes containing the words bell, inequalities, violated, quantum, mechanical and/or predictions:
“In 1862 the congregation of the church forwarded the church bell to General Beauregard to be melted into cannon, hoping that its gentle tones, that have so often called us to the House of God, may be transmuted into wars resounding rhyme to repel the ruthless invader from the beautiful land God, in his goodness, has given us.”
—Federal Writers Project Of The Wor, U.S. public relief program (1935-1943)
“In many places the road was in that condition called repaired, having just been whittled into the required semicylindrical form with the shovel and scraper, with all the softest inequalities in the middle, like a hogs back with the bristles up.”
—Henry David Thoreau (18171862)
“There is not a single rule, however plausible, and however firmly grounded in epistemology, that is not violated at some time or other. It becomes evident that such violations are not accidental events, they are not results of insufficient knowledge or of inattention which might have been avoided. On the contrary, we see that they are necessary for progress.”
—Paul Feyerabend (19241994)
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)
“The correct rate of speed in innovating changes in long-standing social customs has not yet been determined by even the most expert of the experts. Personally I am beginning to think there is more danger in lagging than in speeding up cultural change to keep pace with mechanical change.”
—Mary Barnett Gilson (1877?)
“The Brahmins say that in their books there are many predictions of times in which it will rain. But press those books as strongly as you can, you can not get out of them a drop of water. So you can not get out of all the books that contain the best precepts the smallest good deed.”
—Leo Tolstoy (18281910)