Examples
- Consider R2, the vector space of all coordinates (a, b) where both a and b are real numbers. Then a very natural and simple basis is simply the vectors e1 = (1,0) and e2 = (0,1): suppose that v = (a, b) is a vector in R2, then v = a (1,0) + b (0,1). But any two linearly independent vectors, like (1,1) and (−1,2), will also form a basis of R2.
- More generally, the vectors e1, e2, ..., en are linearly independent and generate Rn. Therefore, they form a basis for Rn and the dimension of Rn is n. This basis is called the standard basis.
- Let V be the real vector space generated by the functions et and e2t. These two functions are linearly independent, so they form a basis for V.
- Let R denote the vector space of real polynomials; then (1, x, x2, ...) is a basis of R. The dimension of R is therefore equal to aleph-0.
Read more about this topic: Basis (linear Algebra)
Famous quotes containing the word examples:
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)