Theorems
- For each point x in an open set U, there is a base element containing x and contained in U.
- A topology T2 is finer than a topology T1 if and only if for each x and each base element B of T1 containing x, there is a base element of T2 containing x and contained in B.
- If B1,B2,...,Bn are bases for the topologies T1,T2,...,Tn, then the set product B1 × B2 × ... × Bn is a base for the product topology T1 × T2 × ... × Tn. In the case of an infinite product, this still applies, except that all but finitely many of the base elements must be the entire space.
- Let B be a base for X and let Y be a subspace of X. Then if we intersect each element of B with Y, the resulting collection of sets is a base for the subspace Y.
- If a function f:X → Y maps every base element of X into an open set of Y, it is an open map. Similarly, if every preimage of a base element of Y is open in X, then f is continuous.
- A collection of subsets of X is a topology on X if and only if it generates itself.
- B is a basis for a topological space X if and only if the subcollection of elements of B which contain x form a local base at x, for any point x of X.
Read more about this topic: Base (topology)